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This report deals with the digital simulation of optical wavcfronts 
which have been degraded by propagation through a turbulent atmosphere ' 
Such simu ated wavefronts are necessary in the computer simulation 
ot optical systems operating on atmospherically degraded light  Such 
system simulation is very desirable because of the expense of building 
prototype systems and testing them at remote locations after construction 
The prime motivation is computer testing of compensated imaging systems 
for viewing objects at extremely large distances through the atmosphere. 

The computer generated wavefronts to be described here are characterized 
by other factors. They simulate light which has propagated vertically 
through the atmosphere and have as a result an extremely long outer 

and ?hP IfwTnfrHtS alS0 inclu?e a'!'Pmude as well as phase fluctuations and the effect of the cross correlation between them. 

1.  INTRODUCTIOf; 

In the past, two technigues have been used to generate members 
of random ensembles: the Fourier transform techniguc and the orthogonal 
polynomial techmgue. In the Fourier transform technigue the power 
spectrum of the random function is assumed known. An array of uncorrelated 
gaussian random numbers with zero mean and unit variance is generated 
using standard digital computer programs. The Fourier transform of 
the array is computed and multiplied by the square root of the power 
spectrum and the inverse Fourier transform of the product is computed 
• he resu.ting array still has gaussian random variables but the correl'ation 
function is now that related to the power spectrum as desired. 

In the orthogonal polynomial technique the random function is 
represented as a sun of orthogonal polynomials, with random coefficients 
For example one might use Zernike polynomials to represent a random 
function in a round aperture. This scheme is frought with peril however. 
unless the polynomials happen be statistically independent. Otherwise 
there wil1 be cross-correlation between the various polynomial coefficients. 
loro^- Surau  apprf,ath would USP t-he Karhunen-Loeve technigue (Davenport, 
1958) in whTch a set of polynomials is qenerated which are eigenfunctions 
of the covanance function. The random function is then expanded 
as * series of these eigenfunctions. Coefficients of the eigenfunctions 
are then known to be statistically independent. 

Simultation of random atmospheric quantities has been performed 
using the Fourier transform technique (Hogge, 1973), (Bradley, 1974) where 
refractive index variations were generated. The Fourier transform 
technique h?s also ueen used (McGlammery, 1974), (Brown, 1974) for the 
simulation of respectively two and one dimensional random phase fronts. 

Random wavefronts have also been generated using a sum of 7ernike 
polynomials (Noll, 1974) and the Cholesky decomposition (Bradley. 1974) 
The work herein also related to the wavefront polynomial fitting scheme 
of Fried (1965) and to general work on Karhunen-Loeve series. 



In this report we extend previous work in that both log-amplitude 
as well as phase are considered as well as their cross-correlation. 
We also consider spatial spectra of much larger frequency range than 
heretofore used.    The result is an approach which combines both the 
polynomial and Fourier transform technique approaches in an optimum 
fashion. 

In this paper a random wavefront is represented as the sum of 
several terms, each pertaining to a different spatial frequency range. 
In each range a technique appropriate to the range is used to generate 
ooth phase and log-amplitude fronts.    In the highest spatial frequency 
range the Fourier transform technique is used, extended to produce 
phase as well as log-amplitude fronts.    In the lower spatial frequency 
'•anges wnere the fluctuations are less rapid a polynomial scheme is 
used which starts out with a set of polynomials similar to Fried's 
but including more terms and ends up with the statistically independent 
Karhunen-Loeve polynomial-;. These are then summed with random independent 
coefficients to provide a particular manifestation. 

In the balance of the paper we will first present the physical 
picture considered along with a description of the spectral separation 
technique.    Then the high frequency problem will be considered, in- 
cluding coupled phase and log-amplitude.    In the next section the 
development of the polynomial fitting scheme used for the lower spatial 
frequency ranges will be presented.    This will include the generation 
of a set of polynomials and their diagonalization to form the Karhunen- 
Loeve functions.    Following that the result of all the techniques 
is demonstrated and a typical representation shown.    The final section 
contains discussion, summary and conclusions. 

2.      GENERAL STATEMENT OF PROBLEM AND 
FREQUENCY DIVISION 

The general physical picture which we are considering is shown 
in Fig. 1 where we see a light beam propagating from a great height 
down through an atmosphere with fluctuating refractive index to the 
input aperture of an optical system.    It is assumed that the outer 
scale LQ and the structure parameter Cf5 of the turbulent fluctuations 
vary with height. 

We desire to generate an ensemble of random phase and log-amplitude 
fronts over the input aperture.    The phase and log-amplitude fronts 
should be normally distributed with the spatial autocovariances and 
crosscovariances or equivalently the spatial power spectra and cross 
spectra appropriate to the situation. Finally the phase and log-amplitude 
should respond faithfully to all scale sizes from the largest to the 
smallest. 



w^^^"""<    I ' I -^-—- -    ^              I     111 

SOURCE 

TURBULENT 
ATMOSPHERE 

4 h 

OPTICAL SYSTEM 
INPUT    APERTURE 

Fig. 1. Illustration of physical situation considered. 
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The spatial spectra of the phase and log-amplitude auto-covariances 
and their cross-covariance are calculated in Appendix A and dre shown 
graphically in fig, 2  for a coherence length r0 of 60 cm wavelength 
of 0.6328 microns and ratio of source height to receiver height of 
ll4. They were calculated using standard techniques (Tatarski, 1971). 

Examination of the spectra reveal one major problem, the tremendous 
strmqth associated with the low spatial frequencies corresponding 
to scale sizes much larger than the aperture. We note that the knee 
in th€ phase spatial spectrum curve occurs at  ■ 10-5 radm-1 which 
correvoonds to a spatial scale of 6 x 10^ meters. If we were going 
to use the Fourier transform technique without any modifications we 
would reed a grid at least lO5 meters on a side and with elements 
much smaller than the input aperture, say a millimeter in size. That 
indicates a square matrix array with 10p' elements on a side, indeed 
not the amplest task. If a coarser grid were used there would be 
too rapid ^ change between the lowest spatial freouency component 
and the ne-t higher one. With such a rapid change in the spectrum 
the discrett Fourier transform operation would not faithfully represent 
the spatial behavior without aliasing. 

Another fart of the problem is that the large scale fluctuations 
are much larger than the aperture size. The large scale fluctuations 
will have relatively smooth variations over the size of the aperture. 
Some method must be found for representing only the portion of the 
large scale fluctuations which are present. 

In order to solve the problem of representing the large scale 
fluctuations we conceptually split the representation problem into 
two parts: dividing the spatial spectrum and relating the portions 
of the spatial spectrum to fields over the aperture. We first consider 
the problem of dividing the spatial spectrum into sections. 

To continue we split the spatial spectrum up into regions, each 
region being sufficiently small so that it can be represented by a 
reasonable number of discrete points. Thus the two-dimensional spatial 
spectrum would be 

(1)     F(r) - l  F (7) 
0 n 

where F0 is the contribution to the spatial spectrum from Lhe highest 
spatial frequency range, F] is the contribution from the next to highest 
frequency ^ange and so on. The various spectral ranges are centered 
about the origin and have the following frequency limits. 
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Fig. 2.    Log-log plots of square root of spectra of log-amplitude and 
phase covariances and of phase-log-amplitude cross covariance. 
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n ■ n -32x2    ■   .x,.y < 31x2' 

n i  1 -2"         < 'x.>y <  (31/32)2 ■ 

n - 2 -2-/32 < i    ,.     < (31/32)2/32 
x    y 

n -  3 -2/322
1 .   ,.     •   (31/32)2/322 

n ■ 4 -2/323 < -   ,.     •;  (31/32)2-/323 

x    y 

The fraction 31/32 occurs because the element (33,33) was chosen to 
represent the zero spatial frequency. Thus eacn spectral region 
corresponds to a square spatial region 32n meters on a side. 

In the discrete representation used for the spectrum in the highest 
spatial frequency range all but the zero frequency spectral value are 
identical to the true spectral value 

w F
0(-x-V 

F<vV ■ 2-(k-33) 

■ 2-(33-L) 1 • Id. < 64 

,. / n 

The value at zero frequency is somewhat arbitrarily chosen. This is 
necessary because the actual value for some of the spectra is vastly dif- 
ferent from that of the first harmonic, so that aliasing would result in 
the corresponding position function if it were used. To avoid this a 
particular procedure is used. We impose the requirement that a finite 
Fourier series representation of the spectrum represent the spectrum 
not only at the discrete points but in between the points also. To 
check this requirement a value of the spectrum at zero frequency is 
chosen approximately equal to the value at the first harmonic. The 
spectrum is represented as a finite Fourier series and then evaluated 
at non-integral values of K and L. For a reasonable value of the zero 
frequency component the spectrum varies smoothly from one point to another. 
For an improper choice there are oscillations or ringing between the 
discrete points. 

For the next, n=l, region of the spatial spectrum a discrete 
representation is also used. In this case it will be used as an intermediate 
step. The discrete representation is formed from the true spectrum 
with the spectrum for n^O subtracted.  In essence this means that 
the spectrum for n=0 is evaluated at each of the discrete points between 
zero and the first harmonic 

J 



(3) <x = 27T(K-33)/32 

^ ■ 27T(33-L)/32)/32 
1 1 K, L <. 64 

and subtracted from the true spectrum at those points.   This procedure 
has the advantage that the newly formed spectrum goes to zero at the 
JulMl^ SPeCtral re9l0n thus renderin9 * aut?™ ical y Sand-f mited 
banner ?denrtica^oS?h.Cttral ^ in.the n=1 re9ion is determined   n a manner identical to that used in region n=0. 

used In'r^?^!!^/0' ^ 0ther SPeCtral re9i0nS iS ident1cal to that 

The procedure for generating random arrays over the one meter 
aperture from the spectra associated with all but the highest soatial 
frequency spectral region involves a procedure using polynomials     This 

SUl5 aÄ PreSently-    Fl>St t0 f0™ the ^sfsVc^^Jl; a
ThlS 

MCO JUS th- sPftra decomposed as indicated it is a simple matter to 
use the Fourier transform procedure to generate five sets of random 
ZfT^ JlfI*f!!2 Siz!S ani t0 find the contribution to an a?2a one 
^rt nf^ntL^i^- Center tf the lar9er arrays-    0ne would need so^e sort of   nterpolation procedure to go from the discrete arrays to a 
much smaller grid a meter square.    Then the sum of all the contributions 

Slre'ct a'pp'roa'ch."16'6' ^ rePreSent the wavef™t-   ™« would be tSe 

We use an alternative and operationally faster procedure for findina 
the contributions over the square meter aperture arising from the lower 
spectral ranges.    The procedure as indicated previously is to expand / 
the contribution to the phase front across the aperture in a series of / 
polynomials with random coefficients.    The variances of the coefficients 
are determined from the spectra for the given range. 

One might envision the procedure as having the following steos 
Suppose we were to use the Fourier transform procedure to calculated 
large number of random wavefronts for each of the spectral regions.    The 
wavefront contribution corresponding to the highest frequency spectral 
range ^retained for use as is.    Then suppose we choose a one meter 
square with 64^ points in the center of all random wavefronts for each 
of the other spectral ranges.    We then interpolate from the large square 
grids to the one meter square grid.    The interpolation should be per- 
formed assuming that the Fourier series representation for each random 
manifestation was a continuous one and evaluating it at the 642 points 
in the central one meter array.    Alternatively the sampling theorem 
could be used for the interpolation.    The values at the 642 points for 
each manifestation would be used to find the coefficients for a polynomial 
expansion of the manifestation.    The coefficients would vary randomly from 

■■■Mil 



one mamfestation to another.    Indeed since the wavefronts vary randomlv 
with normal distribution and zero mean the polynomial coefficients w? 
also vary randomly with zero mean.    One would find the Sari nJe of St 
coefficients for each spectral  range by averaging the square of »ich 
coefficient over the set of manifestations. H    ^ UT eäcn 

Thus one would end up with a polynomial series for each spectral  ranae 
representing the front over the central  square meter.    The coef^cients of 
the po ynomials would be norn«lly distributed with zero mean !d     own 
varnnces.    To generate another random manifestation one would merely 
generate a new set of coefficients using standard random number generation 
llzTul'n Assrn9.^e number of random coefficients required    s^esst an 
64^ the procedure is quicker. 

In the procedure to follow one further step will be added    sliahtlv 
complicat ng the mathematics.    That is that polynomi  Is w ?    be ?o n3   hat 
will simultaneousl/ represent both phase and log-amplitude.    A?so the 
Fourier transform procedure that is used directly for the highes? spatial 

Jotr^Se^^d^Sg^Lp^t^srfV^r"be niodified to »^tÄy^t. 
In the next section the extension of the basic Fourier transform 

rth^PrHn1^1^?0^!^ Ph?se and l09-^Plitude will be con    Sed. 
In the section to follow the polynomial approach used for the lower reg ons 
of the spatial  spectrum will  be derived in general  terms. regions 

3.      HIGH SPATIAL FREQUENCY REPRESENTATION 

We now describe the procedure used to generate the contribution to the 
random wavefronts from the highest spatial  frequency region.    The procedure 
used is based on the Fourier transform approach but is more general      ?he 
approach is extended to two random fronts, phase and log-amplitude, which 
are correlated     The basic expressions derived here will also be used in 
the next section in the derivation of the representation for the lower 
spatial frequency contributions.    We assume that the spectra of the phase 
and log-amplitude covariance functions F^^,^) and F (.x,.v) respectively 
as well as the spectrum of their cross-c6variance. F    K    - f JJ1^"*1^« 
available. W *   V 

The procedure will be to postulate a particular model and then show 
that it can be made to have the desired properties.    To begin, for a sing'.e 
manifestation we generate two square matrices. Ri(I,J) and R?(I.J) of 
statistically independent samples (Hogge, 1974) from a distribution which 
is gaussian with zero mean and unit variance.    Stated mathematically, this 

(4)    'V^V^^i.^I.KJ.L 



POUulI'e IZttL^^, den0te t,,e «fetation operator.    Ue then 

(5a) :(K'o-L'0'  ■ faf'o^o^fK.L) * Fb(K.o>L.0)R2((;>L) 

(5b) ^K.0.L.c)-Fa(K.o.L.0)R,(K,L) + Fb(K.o.L.0)¥K.L)     . 

Ä fr^'eL", sÄ?t^rthe•?p:ctraheFnT,■", SÜ^ 0f ^ 

The desired expected values are 

(6a) 

(6b) 

(6^) 

<^0.u0)> - <Äi&cotuo)> . fl 

(K.    ,K.    H  > 
0*     0 •ö2F:(%.L-0) 

•^^o^o'^C-'-o-L'o)    '^..(^.L.^ 

(6d) <^(K.o,L.o)2    --2F.(K.o.L.o,    . 

Wr^rirÄrFa-Fb- a"d ^ «* ^^ 
(7a) ^% = <h.|2 = v2 ^ RJ^+IFJ^IRJ2-  =   I«   '2.   ir   ,2 

b    ^i^1 ,FaK+ IM 

(7b) 

(7c) 

-2 ; v<:*>*     = F^!^ 12^,^,2,,^,^ =2 

-2 
0^ = <m^=|Fcl^|R,|2>t|Fb|2,|R2|2>=,F|2+|F|2, 



In Eqs. (7), use has been made of the statistical independence of the 
matrix elements stated in Eq. (4). Solving Eqs. (7) for Fa, Fb, and 
F , we obtain (for the case where Fa, Fb and Fc are real), 

(8a)   Fa ■ -F^ü__ 

(Ik)   F, 

(8c)    F = J c   'J^T^l 
Ihese three spectra are displayed in Fig. 3 for the complete spectrum. 
Note th^c the magnitude of Fc is plotted since it becomes negative 
at K 

;. 10". 

Thus to generate one sample wavefront the procedure is to generate 
the two random matrices, Ri(K,L) and R2(K,L) and then *(KK0,U0) 
and ;ftKr0,U0) using Fqs. (5) and then to take the inverse transform 
using 

-,i2TTr(I-1)(K-lHJ-l)(L-in 

(9a) 
No 

o'-^o' f 

-i2.[(I-lUK-n-(J-l)(L-l)] 
N 

(9b)   Ulx0.Jx0) - 'HI Kt<0,l<0) * 

Equations (5) and (8) completely describe the desired model for 
the generation of random wavefronts. The model requires the use 
of two arrays of random numbers, and three spectra which are nonlinear 
combinations of phase and log-amplitude and cross covariance power 
spectra. Wavefronts generated by this model have been demonstrated 
to have the correct first and second order statistics. 

10 
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Fig. 3. Log-log plots of square root of spectra Fai Fb, and F^. The 
absolute value of Fc is plotted since Fc becomes negative 
around r* 2v. 
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For the case at hand where the spectra must be divided into regions 
it is the spectra ra, FK. and Fc which would be divided since it 
is those spectra from which the random spectra and random wavefronts 
are generated. Thus the procedure would be to take the spectra in 
Fig. 3 whKh have been formed from the undivided log-amnl itude. phase 
and cross spectra of Fig. 2  and apply the spectral divisions, and 
find the best zero frequency value. Equations (3) {?.)  and (9) then 
give the wavefront manifestations, applicable to any spectral region. 

Tn this section we have considered the generalization of the 
Fourier transform procedure to the case of coupled phase and log- 
amplTtude. The equations for generation of the combined random fronts 
have oeen derived. The procedure is applicable to all spectral regions, 
although U will be used for only the highest frequency region  The 
procedure will be combined with the polynomial approach for*jse in 
the lower spatial frequency regions in the next section. 

4. LOW SPATIAL FREQUENCY REPRESENTATIONS 

In this section we consider in detail the representation for 
the lower frequency regions of the spatial spectrum. The development 
is based on a polynomial representation and applies to both phase 
and log-amplitude and their cross correlation. 

In the following both the phase and log-amplitude will have polynomial 
representations. That is, each manifestation of both the phase and 
log-anplitude will be represented over the input aperture by the polynomial 

(10a)   .(F) = j .n.n{F) 

(lOb)   :(r) - I  •  (?) 
n 

where the .n(r) are a finite set of orthonormal polynomials defined 
over the input aperture and the coefficients ,n, ^n are gaussian 
random variables with zero mean and variance yet to be determined. 
The various random coefficients are in general correlated, cross-* 
correlations occuring both among the various log-amplitude coefficients 
and among the various phase coefficients and also occuring between log- 
amplitude and phase coefficients. The specific form of the individual 
polynomials for one situation will be shown in the next section. 
Using Egs. (10) the contribution from the lower spatial frequency 
ranges then has the form M  j 

12 
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(Ha) 'I (r) - 
N 
y 

n=l r r n=l 
(F). 

Our goal is to find another representation in terms of a new 
set of orthonormal polynomials ^(r) whose coefficients are also 
qaussian random variables with zero Man jut whose coeffcients are 
uncorrelated. The complex log-amplitude will then be expanded in 
a series of the new polynomials 

(lib) ^(F) - c.^(f) 

This new polynomial series will  then be used for the random wave- 
front generation.    One merely generates the random coefficients, 
en, and suns the series at the desired values of r.    The series with 
uncorrelated coefficients is desirable because standard computer- 
based random number generation schemes generally produce only uncorrelated 
random numbers. 

The procedure for generating the polynomials whose coefficients 
will be uncorrelated is to diagonalize the covariance matrix of the 
multivariate gaussian distribution associated with the orthonormal 
polynomials.    If there are N polynomials in the set, then there will 
be 2N gaussian random variables.    N are for the coefficients of the 
log-amplitude representation and N are for the phase.    Thus the joint 
probability density for the 2N random variables is (Davenport, 1958) 

(12) H*v ••• vv ••• i*) 

(2-)"N'Q!exp - 1 gQ^gM, + H VnWn + ^Q?n*n,Wm 

where the matrix Q = C1  is the inverse of the covariance matrix, Z, 
including phase autocovariances, log-amplitude autocovanances, and 
phase-log-amplitude cross-covariances.    The covariance matrix is 
defined by 

(13a) •n^m n'm 

n3b)    c^ - <vm> 
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The calculation of the covariance matrix elements will be discussed 
later in this section. 

The procedure for finding the new random indeoendent coeffi- 
cients is well known: transform to a new linear combination of coeffi- 
cients which diagonalizes the quadratic form in the exponent of the 
joint probability density function. To illustrate this we use a 
matrix notation.  The quadratic form, Q, in the exponent of Eq. (12) 
is written in vector notation 

(14a)   2Q = vT5 v" 

where the vector, v, is 

« ■ 

(14b)  v= (:r-2 ••• Wv'v '•• S|) 

and the matrix ^ is the inverse of the covariance matrix as indicated. 
To diagonalize the quadratic form find vectors, w, satisfying the 
matrix eigenvalue^ equation 

(15)   $ wn = > wn n   n n 

Then the diagonalizing transformation is the modal matrix, R, whose 
columns are the orthonormal eigenvectors, W . 

n 

(16)    flT $ A = .f 

is the diagonal matrix containing the eigenvalues. Then the new 
ndom coefficier 

(17)   7=Mc 

random coefficients c are given by 

14 



where 

(18) c - (c1(   ... c2N) 

The cn are the desired random independent variables.    They are gaussian 
with zero mean because the »„ and .n are gaussian with zero mean.    The 
cn also have variances rjL given by the diagonalized inverse covariance 

The complex log-amplitude in Eq.   (11) can be rewritten in terms of 
the new coefficients.    Writing Eq.  (11) in terms of a function vector, 

(19)       *<F) = (•!• -2 ••' -rr J-i« j-2 '•• bj 

we have 

(20) ^(r)  ■ -I(?)v 

(21) =-:T(r)Mr 

(22) - J(r)c - I znn{r) 

where 

n n 

1T- (23) 5(?) ■ (••■,(?), r
2.(r),  .... :2n[f))      M1- 

Equation (22)  is the desired result.    The first order complex 
loq-ampmude, li, is represented as a sum of orthonormal polynomials, 
the '  (r), with random uncorrelated coefficients, the c  . n n 

We note some interesting features in this solution.    The 
polynomials 'n(r) are in general complex, since the diagonalizing 
transformation mixes log-amplitude and phase.    The solution is also 
identical to a solution of the Karhunen-Lofeve problem.    This is 
demonstrated in Appendix B. 
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We pow proceed to derive a general exores^inn for thQ ^ 
matrix C from which its inverse Ö = c-lrSnhn nhtl-    ^ e "va!:1ance 

vation involves a severa    step procedure     Bas^a      "fhp .Hi deri- 
to conceptually generating a SavTron^which ^t a%   ^^T"' 
.sing the Fourier transform technique.    The stat^tica    p?opert es 
of this large wavefront are thus known from the proceeding sict on 
Next imagine that we generate an ensemble of wavefrSnts and fntlr 
polate between the matrix of points using the Lmpl?nq theorem 
representation.    Imagine that we then take the cene? one square 
meter of each ensemble member and expand that in terms Sf S?2l« 

fhe       arnHPreSe;tati0n.0f EqS-   (10)'    We can ^ detTJne e^ch of' 
cSv     ances  ' T> ^^ T^ *"* further can ^e^l 

rfUntZnfHa    ■,"'?'' l:rVn:' and cross covariances, <,n<,m> con- 
stituting the elements of the covariance matrix.    In Eqs    MOl 
■(r) and :(r) are defined over a one square meter aperture     Usinn 
the orthonormality assumed for the polynomiair n(r-) we can »Hto 

(24) ••n = |j-(r)   -pCr) w(r)dr 

where w(r)  is the aperture function, 

« 
(25) w(f)  =  1 J • V2 < X < 1/2 

j- 1/«<y < 1/2 . 

0 otherwise . 

in Eqs.  (7)     We thintSTJhl :lK>0•L>o, anJ      (K^o.^o) as indicated 
over^heWge array ' 1n'erSe transfo™1 ^ obtain the phase 

P jir((K-l)(M-l) + {L-l)(N-l) 
(26) K%^) - KJ IWfcc^),    o 
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(27) :(x.y) ■ )' I  :(Mx  .Nxjsinc 
M N 0      ü 

r. 
L o 

(M-33) sine;' L-- (33-N) 
LX0 

where sinc(u)      sin(u)/u.    Combining Eqs.  (5),  (24), (26) and (27) gives 

where 

(29a)        Un(K.olL>o) n    I J VjMx  .Nx  )e    0 
o   || |j    nv    o'    o' 

%((K-1)(M-1)+(L-1)(N-1)) 

and 

(29b)        Vn(Mxo.Nxo)    =j|dr w(r).n(f)si nc-r — -  (M-33) sincTT S- -  (33-N) 

A similar expression can be derived for the log-amplitude coefficients. 

(29c) 'n " I pc^O^o^l^O^^^b^O^O^VS^O^H^t^^ 

The covariance matrix elements then follow from Eqs. (13), (28), 
and (29). 

(30a)   C, 
'n'n 

'     '    ^n.L J|2*!Fb(fe0,Ua|
2) U;(kKo,Uo) nTm K L a  o' o' 

[in^o-o) 

I    I    'I2*    (K^»L^)Um(K^.L^)Un(
K^.L<„) pro    o  o m  c  o n  o  o 

17 
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(30b)      CVm
=<'"*=   ^''^^o'S'l^lV^^o» 

mx    o'   o* rr   o'   o' 

{ [ Ä(S'Uo>U;<KVUo)Un<KVUo) 

{3üc)       C.  ,   = <in*>   = 
n m 

ll{F^o>UoK^o'Uo)+ lVS'Lgi2} 

m'    o     o   nv    o*   o 

= 11 
K L 

-2t KoF    ^o'UoK^o'l*o)[i^o'1^ 

Equations (35) together with Eqs.  (33) constitute the formal solution 
for the covariance matrix.    In the next section a particular set of 
polynomials will be chosen.    To go with these the particular associated 
Vn(Mx0,Nx0) and Un(K<0,U0) are-evaluated in Appendix C. 

To summarize, we have considered in formal terms a method for generating 
the contribution to the random wavefront from the lower spatial frequency 
portions of the spectrum.    A polynomial representation is derived 
in which the complex log-amplitude is expressed in terms of a series 
of complex orthonormal polynomials with random uncorrelated coefficients. 
The variances of the coefficients are related to the covariance matrix 
defined in terms of the cross correlation between the random expansion 
coefficients.    General expressions for the covariance matrix elements 
are derived. 

18 



ngppviw^^w 

5.    RESULTS 

We now proceed to give the specific details for the random wavefront 
simulation.    First the spectrum is partitioned and the low frequency 
problem is treated.    Then after choosing a group of ten polynomials 
orthonormal over a source aperture of unit width, the resulting coveriance 
matrices, eigenvectors and eigenvalues are listed.   The high frequency 
problem which has been discussed previously is mentioned only in 
regards to the st-^erposition of the two results.    Finally a typical 
ensemble member, a single wave-front manifestation, is .displayed. 

The polynomials employed in the expansion of the wavefront are 
listed in Eqs.  (31) 

Group I 

(31a)       *0(x,y) ■ 1 

(31b)       ^(/.y) = |j|   (XV-^) 

(31c)       ^(x,y) ■ 6j|(x2-y2) 

Group II 

(31d)       ^5(x,y) ■ 12 xy 

Group III 

(31e)       ^(x,y) = Zjlx 

(31f)       *6(x,y) = IzJlMxy2 - ^ x) 

(31g)       ^8(x.y) ■ 20j7(x3-|&x ) 

19 
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Group  IV 

(31h)        ,2(x.y)  - 2jly 

(311) -/x.y)  =  12^15  (yx2 _  1 
T7 y) 

(31J)        ^(x.y)  - 20/7 (y3 - ^ y) 

As indicated the polynomials are chosen to be orthonorrral over a 
umt square as described by Eq.   (25). uruionorrai over a 

The grouping of the polynomials in Eqs.   (31) was done to indicate 
the s^ilanties in symmetry.    The first setV0r).o(?) and    d R 
employ the same combinations used by Fried (1965)      T^ey are even 

Jhird JJ ?.nd ^H    ^ Se.COnd Set'   '5(rl is odd in both x and y     The 
SP    ar     nlnt?^!1"-^^ even lnuy'    The Poly^ials in the fourth set are TdentTcal with tnose in the third set except for a ninety 
nfth! TSPÜl'    JS o"*™^ exPect the statistical properties 
of the last two sets will be identical because the correlation functions 
and power spectra have central symmetry. '«"www 

nf fh^ IS! lUpJfimrym choice of Polynomials is the partitioning 
of the spectra.    We used a trial and error procedure to choose new 

eaL    'Fnr'F V? p^ f0r/d' Fb' ^^^ in the hi5hest sP^ial frequency region     For Fa the zero frequency value chosen was 1.75 times the 
value for the first harmonic.    For Fb and Fc the zero-frequency values 
nfrfhleiefqfUal t0 the Values of the ^spective first haJnics      p\otl 
I     rLli T™ TCtJa [!Sed for regions ' and 2 are shown in Figs. 
4     The circles indicate the values at the discrete points while 
the solid curve comes from the interpolated values.    The last curve 
is an example of a poorly chosen zero frequency value. 

The next step is the generation of the covariance matrix.    There 
is a simplification that arises in the covariance matrix because 
rln h! ^-^ Properties of the particular set of polynomials which 
can be most easily demonstrated by choosing a particular order for 
the polynomials.    Thus for the function vecton,'(f) in Eq    (19) we 
choose a complex twenty element vector H.  v    / we 
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O.C.   VflLÜE>    2.366   XIO1 

MAXIMUM   FREG.=     6.283   XIO0 

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 
KflPPfl   (M-1) 

Fig. 4a.    Linear plots of spectra Fa, tbt and Fc for spectral regions 
n=l and 2.    The negative of Fb and F   are plotted. 
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0.000 

D.C   VflLUE=    2.091   XIO-1* 

MAXIMUM   FREQ.r     6.2B3   X10c 

IE5 0.250 
-i r 

0.375 0.500 0.P25 
KflPPR   (M-') 

0.750 0.875 t.000 

Fig. 4b,    Linear plots of spectra Fai Ft,, and Fc for spectral  regions 
n=l and 2.    The negative of F.   and F   are plotted. 
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D.C.   VALUE-   11.013 XlO"5 

MAXIMUM   rHEQ.=     6.283   X100 

C.2S0 0.3V5 0.500 0.6P5 
KflPPft   (M-1) 

0.750 
ff»- q)    g.   <lj   Pi   g 

0.875 I.OQQ 

Fig. 4c. Linear plots of spectra Fa, Fb, and Fc for spectral  reaions 
n=l and 2.    The negative of Fb and F   are plotted. 
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(32) ;(r)  (V^^J^^^^^) Jv, (r)(j.6(r) .j;8(^). 

J.2(r).j;7(F).j.9(r)..o(F)l.3(r),.4(r),.5(r). 

•1(r)..6(r)..R(r)..2(r)..7(r),.9(r)). 

[he resSus^ ^ ^ ^'^ firSt f0r later con^nience in displaying 

.imnw '7p1;f1cation is that the covariance matrix divides into 
simpler submatnces as shown in Eq.   (33). 

6x6 
Group  I 

(33) C 

2x2 
II 

0 

6 x 6 
Group III 

6x6 
Group IV 

It might be notea that a covariance matrix of the form shown in 
Eq.  (33) exists for each of the low frequency spectral  regions? 

sDPr^i'ranw" ^l^ 1 ^W*^ ** eigenvectors for 
spectra    reg ons n=l and n=2 are shown in Table I.    The submatrices 
are divided into sections.    The upper left and lowpr right ä^adrants 
contain phase and log-amplitude covariances respective y      The other 

two quadrants contain phase-log-amplitude cross-covariances. 

The eigenvalues are listed in the next row in decreasing order 
Below each eigenvalue is the corresponding eigenvector      It is in-' 
teres ing to note that the eigenvectors with ?ne excepetiin      1 
contain one element very near unity and with the other elements 

HI E   Lai le-St Seyeral orders of ^gnitude.   This indicates 
that for these eigenvalues: first there is very little   cross- 
coupling between phase and log-amplitude, and second that the poly- 
nomia s chosen are indeed quite reasonable representations of the 
actual eigenfunctions.    The one exception is a mixing between the 
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consistant and spherical terms for n=l. The result is two in- 
tensity patterns neither of which is constant. It seems reasonable 
that a constant intensity would not be one of the "natural" patterns 
for atmospherically degraded light. 

The adjusted spectra Fai Fb, and Fc for the region n=0 are 
shown in Figs. 5. The two-dimensional integral of these are ob- 
tained and combined to form the variances of phase and log-amplitude. 
These variances are shown in Table 2  along with the sums of the 
eigenvalues for regions n=l and 2. It is interesting that the phase 
variances for other than the constant term are larger than the phase 
variance in region n=0. The log-amolitude contribution of region 
n=r) is much larger than that from region n=l, thus indicating the 
high pass" property of the atmosphere to amplitude fluctuations. 

Figures 6 are contour plots made from a typical manifestation 
of a degraded wavefront. There we see the contributions from the 
regions n=L,l and 0. The contour lines are drawn every half wave- 
length for phase and every half radian for log amplitude. As 
expected the contours are more closely spaced in the high frequency 
regions. For lower spatial frequencies than n=2 the contribution is 
merely a constant and is not shown. 

The results of Table II tend to indicate that the Fourier trans- 
form technique and tht polynomial approach are both necessary and 
important in the complete description of light that has come down 
through the atmosphere. One might ask if the polynomial approach 
could be used to alone simulate atmospherically degraded wavefronts. 
To answer that question we consider some further results of a 
slightly different nature. The Karhunen-Loeve integral equation 
v/as solved numerically using the correlation function derived from 
the phase spectrum of Fig. 2.    A grid of eight by eight points was 
used. The eigenvalues are shown in Appendix D along with the designations 
of a few low order eigenfunctions. Reference to that appendix shows 
that the eigenvalues are very closely spaced in value indicating 
that it would be difficult to reject any of the eigenfunctions. Thus 
all sixty-four eigenfunctions would be necessary for the coarse grained 
eight by eight simulation. Even if all the eigenfunctions were used 
they would have to be summed at each point with random coefficients 
to generate the simulated wavefront. If all those random coefficients 
are going to be necessary it seems much more economical of time to 
use the Fourier transform technique to generate the wavefronts directly 
than to have to sum over each eigenfunction for every point desired. 
Thus for the high spatial frequency region the Fourier transform 
approach seems much more economical than the eigenfunction approach. 
On the other hand the polynomial approach requires many fewer terms 
in the lower spatial frequency region. The general conclusion then 
is that the combination is the appropriate one where both high and 
low frequencies are involved all together. 
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Fig. 6a.    Contour plots of the contributions from spectral regions n=0, 
1, and 2 to phase front and log-amplitude front. 
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Fig, 6b.    Contour plots of the contributions from spectral  regions n=0, 
1, and 2 to phase front and log-amplitude f^ont. 
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Fig. 6c.    Contour plots of the contributions from spectral regions n=0, 
1, and 2 to phase front and log-amplituoe front. 
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Fig. 6d. Contour plots of the contributions from spectral regions n^Q, 
1, and 2 to phase front and log-amplitude front. 
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Fig. 6e.    Contour plots of the contributions from spectral regions n=0, 
1, and 2 to phase front and log-amplitude front. 
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Fig. 6f,    Contour plots of the contributions from spectral  regions n=0, 
1, and 2 to phase front and log-amplitude front. 
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TABLE   II 

n Variance 
Phase Log-amplitude 

0 .2220      ^  .3017xl0'3 

1 .5543xl02  .9330xl0"6 

2 .2068xl06 .2788xlO"R 

One other item might be mentioned in passing.    In the ■MlltaH*. 

that way and perhaps always will,    fhe method of relatnq the usual 
requirement for pc.itive dtflnlttMSt. that aM  the sub determinan <; 

on fMs^oint10 ^ SPeCtra iS ^ 0fc—    Mo- ^cM'SS 

.ni HH^lli alier ^e new sPectra have been computed for reqion n=0 
ani the eigenfunctions and eigenvalues have been obtained ?or?e3ions 
n-1   ... C we can actually generate the random wavefronts      This ?s 

(22") TnrVSV  {S) ^M f0r the highest Vectra!  re ion a 5   q 22) for the lower spectral  regions.    The procedure is illustrated* 
in the computer algorithm shown in Fig.  7. musirated 

sdJS srfnSt^fL'Js1?: ^ comp:eie wavefront ****** .tnerie was illustrated for the spectra under consideration     A set 
of polynomials was chosen for the low frequency spectra    reoions 
and the covariance matrix diagonalized to give\ e Karh neSSeve 
polynomals appropriate for uncorrelated random coefficient     A 
complete wave-front was illustrated in terms of the contHbutions 
from the various spectral  regions. tomriDuiions 

6.     SUMMARY 

ripnrllnT^v^V e ha-e ?e^l0Ped a scheme for simulating randomly 
fdJft*PKCa2 •eamS 1ncluding both phase and log-amplitSde and y 

the effect of their cross-correlation. The scheme works for optical 
degradations whose scale lengths range from much smaller to much 
larger than the input aperture size. An extension of the well-known 
Fourier transform method is used for the small scale fluctuations 
and a polynomial approach is used for the larger scale fluctuations. 
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F-g. 7. Schematic diagram of computer wavefront 
generation algorithm. 

44 





r 

During the process of developing this wavefront simulation algorithm 
several other problems were solved. The problem of using the Fourier 
transform method to simulate both phase and log-amplitude fluctuations 
includino their cmss-correlation was solved. The problem of using the 
Karhunen-Loeve approach for wavefront simulation was considered and 
extended to a complex variable, the complex log-amplitude, thus enabling 
the application of that approach to both phase and loq-amplitude, A 
problem of handling the large range of spatial scale sizes was solved by 
the spatial frequency division. Further the problem was solved using an 
efficient scheme by combining the Fourier transform approach and the 
polynomial approach or ranges where they can be most suitably used. 
This technique will be especially useful in the computer examination of 
active systems to be used for the compensation of atmospheric degradation 
of images (satellite, etc.) the light for which has propagated large 
distances down through the atmosphere. 
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APPENDIX A 
SPrCTRA 

In this appendix we derive the expressions  for the spatial  spectra 
of phase and loq-amplitude covariances and the phase-loq amplitude 
cross covariance for light that has propagated down throunh  the 
atmosphere.    The expressions draw upon work  in the literature 
(Tatarski,  1971)  and end up with computer evaluation of   the associated 
integral expressions.    In this case the spectra are particularly sig- 
nificant because they apply to a light beam which has propagated down 
throunh the atmosphere where there  is a much  larger low spatial   fre- 
quency content than for light propagated horizontally near the ground, 

The starting point for the three spectra are expressions in the 
literature (Tatarski, 1971, Fqs. 5-27, 5-33, 46-14,15,16, and 46-22, 
23,25,26). 

(la)  F^.L)  - k' 
-L -L j^d'-z") 

exp     ; 
o- 0 

2 k 
F^k^z'-z-^'dz" 

(lb)  F2(.-T,L)  =  -kL 
-L-L -i  ^(PL-z'-z") 

exp     — 
o-o 

2 k 
F  (-.z'-z'^dz'dz" 

(lc)  F 7Lrl 
[F,  ♦ Re(FJ] 

(Id) F   - \ [F1  - Re(F2)] 

fie) F - y Im r2 

(If)   B/:)   -  2 J0(-r  )F|(.TIL).Td.T 

•' 0 
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n«) y^-i-j = _  jtc-d'-i«) 

along the path,    -^/k is the light wavelength, and :n(r z)  is ?he re- 
fract ve index spatial spectrum.    We also uimi that the index 

afongthe^ath ' Varyin9 ^^ 0f ^ POSition'  (V2)(z'+z") 

t. c AS L^Ri Step in evaluating the integrals in Eqs.  (1) we switch 
to sum and deference coordinates arranging the integration limits in 
such a way as to perform the difference coordinate inJegraJionfirs^ 

(2a)  • 
♦* 

(2b) n = z'  + z" I 

Combining Eqs.  (?),  (la), and (lg). qi ves 

(3)    F^.L) - k; 
fL/2     r2fi 

dn e 
I z n 

+ k" dn 
'1/2 

2(1-,) 

-2(1-0 

J>r 

i   V«^")«V 

thlfc^ln3 P1! \ ^^^tion, making the substitution n^L-r in 
the second integral and combining the integrals results in 
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(4a) F^.^L) 
2   |L/2 

io 
d»   sine 

^2 

\2¥ 7y 

J ;
n(r.-) +  :n(' .L-"V 

In Eqs.   (4a),    by definition, sinc(x)=sin(x)/x, 
operations on the F? integral   qives 

Ptrforininq similar 

(4b)  F2(7T.L)  ■ -4k 2  f 
L/2 

ndn   dK,/Slnc(2nt,) 
Jo z z 

•i-yd-) -1<Tn] 

l" (•.•)e *;n(:-,L-.)e       J 

We assume a von Karman type of refractive index spectrum where 
both the structure parameter, Cp and the outer scale, L    are 
functions of height h given by Eqs.  (5) 

(5a)  :n(-.-)=0.033c2(.;^jj2 + >2 J
11/6 

(5b) cj;(h)" - C2(HO) (h/Ho)-4/3 

(5c) Lo(h)  =Lo(Ho)(h/Ho) 

We are considering downward propagation from height H] to height H0 
so that the height is related to the path variable, u,  by 

h = HL - (HL-Ho)(-i/L) . 
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H0 is the height at the bottom of the path so that 

v-'-Mk -fft-)) 
Combining Eqs.  (1c).  (Id). {4a).  (5). and (6) we have for F  , F  , and 

(7a)  F| = 2k2 x 0.033 C2(H )   f     ' ndn  f   d 

\-</3. 

O     't'Vj      (si"c'^(^^j-^MZnKz)cos(^ (L-n)) 

// 1.077 N2    2    2   ;>r'7? ' 

•itMi-r (sinc(2n^ s)-sinc(2n<z)cos(^ 

■wik-^ilj 7     "2 

50 

1.077 \2       o       o   \ll/6 

 — —^   ■    • ■        ——- ^ ^. 



—WK—wmwimn«.!»» 

(7b)  F^ = 2k2 x 0.033 C2(Ho)   fL/2 ndr,  f   d. 
•'O ■'-a. 

t\ /HL XN"4/3 /   -2        \\ 2 

//1.077 ~\2        ^        9   \ll/6 
+    <T   +    k 

I z 

       v    0 

1.077 
-       +>

2^2 

z v.ft-MM  ' 
Tm 

• 

(7c)  Ft#- 2k2 x 0.033 C2(Hrt) n' o' 

L/2 
ndn d      sinc(2nK  ) x 

x-' 
l      '    Hnir    (L-) 

2 
T 

1.077 

l\-v(i-t(HJ ' 
2       2       2  .11/6 

.ft-^ft-)) 

4/3 
sine| jl 

1.077 

L(H)bk.%-lfi 0 o\r     L   1<HO 

N 

* 2.  2\ll/6 
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Equations  (7)  can be further simplified after examining the offset in the 

'ower l"l/6    "       cornparison wl'th  Ü1C wid^ of the term raised to the 

(8) IT    .  ; 
2k       7l    'T "' 'T 

IoULi?! ;!HSetr0f th(J si^N
furic^o" is never significant and can 

be neglected.    Equal ons  (7) then reduces to 

(9a) F(   - 2k2 x 0.033 Z2
n{H0)   ^ *    -6-   f    ^iniZrvJ 

/H /H \ \_4/3 2 

7U)77 

wG;-rft-\ 
^ Nii/e 

2        2 

( 
l-ikalfl 

v-4/3 

L    \ H 
1  -cos 

1.077 

(H-^-WSH 'ov  o'VH 
\  o 

I-/", 
2        2 

+'T+'z 

.11/6 
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II  . 1LJ  ■ilMii" 1   Uli 

(9b)  F    = 2k2 x 0.033 C2{H  )   ^ ...J" 
nl"0i ndn    dK ifnc(2nic    ) 

/H. /H        w-4/3   - , 2 

YL077  N2      o      . 

^   LJHJ   ^-r     rrL--ll    '' 

J 1/6 

o I   o 

,-3/2 

1  + cos jJ- njj 

:im f      2      2 

0    0    Ho        L       I Ho  -1 

\ll/6 

(9c) F - •2k2«»■"3 c>j 'L/2 ,;d., r d jnc(2ii>, nv  o' 

'H, H 

,H; " fir - ' 
X • "  0 

1.077 

r inlr    t«-n) 

\ll/6 

-4/3 

+      0 i__p_ //   _ 

1.077  \       2       2   \11/6 
-( 
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corresponds  lo a  spectrum 

(lib)        r {.   ) - 6:88r(liy6)2^3 .'^3    . .m      -11/3 

o 5 

Comparing Eqs.   (10c) and (lib) we see that 

r    =    6.88: (n/f)25/3 
-3/5 

1 (2  )2(6/5);(l/6)k2x0.033C2(H  )(3H  )(}  -(ß ]  '   ) 
n    o O \      \ H.   /       ) 

6.88 
3/5 

.2.9U2(3Ho)C^-vR2   )     j 

In Eqs. (9) substitute 

5/3 
2k2 x 0.033C2(H ) - 6»88 01/6)2°"  

n o 
2 (6/5) (V6)(3H )| 1 

H \l/3 N 5/3 

This is included because it is often simpler to work in terms of r0 
rather than k and C^. Equation (9) and (IP) are the results of this 
writeup. Figures 1 and 3 in the text are the results of computer 
evaluations of the expressions qiven. 
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(B4)     I df C(r'.r) x(r") - 'x(F) 

where A corresponds to the domain of interest where •(r) and (r) 
are non-zero. Tquation (B4) corresponds to the two coupled inteoral 
equations ' 

(B5a) -       (f   - 
,, drC (r'.r) (r) ♦   dr C (r',r):(r) ■ ■■Ir') 

A 

t 
i i 

(B5b)    JJA drC (F'.r)!^) ♦   dr C (r',r):(r): ^(r1) 
•'jA 

Equations  (B5)  reduce to the standard Karhunen-Loeve equations if 
(r)  and   :{r)  cire uncorrelated. 

To solve Eqs.   (B5] we use a polynomial  series representation. 

(B6a) .(F)  =  V,     ,  (r) 
•   on nv   ' 

(B6b) :{F)  =  V;     ,  (f) 
on n 

The zero subscripts on the .Qr]  and :on are intended to differentiate 
thTs expansion from the similar expansion in Eqs. (10) in the main 
text. The orthonomal set • .n(r) should be complete. In practice 
we will use a truncated series for which the eigenvalues corresponding 
to the neglected terms are sufficiently small so that the terms dropped 
are indeed negligible. Inserting solutions (B6) into Eqs. (B5), multi- 
plying through by .Jr') and integrating with respect to r' gives 

N N 
(B7a) I C       .     ¥ It       .     =.. 

1     "mn on      1     •••n1n
on        om 

(B7b) \^..       'nn + IC =  >., 
1      "nn     0n       1        •   mn'0n 0n 
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■ " • ■ 

where 

(B7c) 
uv mn 

AA' 

The subscripts ^ and v in Eq.  (B7c)  stand for t and t.    Equations 
(B7) can be combined into a single matrix eigenvalueEquation, 

(88) fTy ■y 

where the matrix T contains C       C,,  and C    ; and the vector y 
contains both .    and  r   as indicate in Eqii  (B9) vector ^ 

n 

(B9a)     C 

•11 

C 

C^  i 
uvj 

i    C 
11 

H 11 

'** 
uv 

v,0 
yv 

(B9b) Y -  (1 oi• '02- ••• 'orr -oi, ^02 "• W 

wJth^uing^J: llTell^ir ^ ^   'ell-kn0Wn >™*" ^ starts 

(BIO) >I|  = 0 
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The resultant values for the eiganvalues, >p then give the eigenvectors 
yp and the diagonalizing matrix M0 whose coTumns are the normalized 
eigenvectors. The diagonalizing transformation is 

(Bll)   y = M z 

We now display the connection with the multivariate distri- 
bution  indicated in the text.    Multiplying Eq.   (B8) from the left 
by \-l  C-l gives 

(R12a)      Q y ■  \m} y 

where 

(B12b)      Q = C 1 

Equations  {B12) are identical with Eq.   (15)  in the text if we equate 
the ortiionormal  polynomials  .n(r) and  in(r).    Further the eigenvalues 
of the ^matrix in the multivariate distribution are merely the re- 
ciprocals of those of the Karhuneu-Loeve problem and the eigenvectors 
y   and w,, are identical 

This completes the desired demonstrations: the derivation of the 
associated Karhunen-Loeve problem and the demonstration of the equiva- 
lence of the multivariate and Karhunen-Loeve approaches. 
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APPENDIX C 

Ue now derive expressions for the functions Un(K n,L n) and 
V(Mx0 Nxn) which were introduced in the main test ^qs.^Jin the 
niai n text. 

for thl^cV0'? 0(
f 9?nerali^' *  «»^PlV only the development 

tor the phase. To begin, assume that the orthonormal functions are 
polynomials in x a- j y so that in general 

(C-l)      (x.y) - i   g    xPy\ 

Inborn ""^ aPertUre the fUnCti0n Vn(Mxo'Nxo)  ™ * «ritten 

(C-2) 

where 

(C-3) 

Vn(Mx
0'

Nx
0) " I %DJDW  L(N) npq  ps   •   'q' 

Iq(N) 
f 0 

i-x0/2 
dx x^ 

I > 
..nc-[^ -  (N-33) 

in thl^ ^^^U^-o.L'o)  «" Eq.   (29a) can also be written 
in the more detailed form. 

(C-4) 

where 

(C-5) 

U(K>o'L'o) = ^   'npcVS,)^) 

N 

0 M=l     1      0 1       0' 

thr.n11nhri|t^ ^J^Tl«11 ^^^ in *<**'   W the functions U0(K    ,L    ) through UgClCic ,U ) have the following form: 0     o,L o; 
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(C6a) VKk0.U0)   ■  T0(K.o)To(L.o) 

(C6b)        U,(l*0.Kk0) ■ i!/rT0(fe0)T,(U ) 

(C6c) U2(l*0.Lk0)  ■ -2jT,(K.0)T0(U0 

(»a, UjdCk^lk,,)  = 6    | [T0(K.o)T2(L.0) * T^K. o)To(L.o) 

■I To(K-o'To(L.0): 

(C«.l U4(Kk0.lk0)  ■  6:| [T0(K.0)T2(k.0)  - T2(K.o)To(L.0)] 

tC«f) U5(kk0.Lk0)  ■ -12 1,(^)1,(1«,,) 

(C69) ll6(l(k0,Lk0) ■ 127» [T2(IC«0)T,(2«0) - 1  T„(K. ^7,(1.^] 

(C6h) U7(l(k0.Lk0) - -V.nn^0)J2{l.o) -jyT^fe,,) T0(L,0)] 

1C61)        U8(Kk0,lk0) - 2Q/7 [r0(r0)T3(L.0) - ^^(K.^T^L^)] 

(«j)        U, (Kko.Lk0) ■ -20.7 [:,(.:■ „IVS' " k WWJ 
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APPENDIX D 

This appendix contains a listing of the sixty four eigenvalues 
of a solution for the Karhunen-Loeve integral equation assuming an 
eight by eight grid for the aperture plane. The correlation function 
corresponded to the phase function calculated in Appendix A. 

EIGENVALUES 

.9999E 0 ■ ■(0,0) .1875E -5 "(0,1) 

.9220E -7 • ■(2.0) .4423E -7 -(2,1) 

.1802E -7 .1590E -7 

.8486E -8 .8486E -8 

.4575E -8 .4162E -8 

.3201E -8 .3015E -8 

.2281E -P .2254E -8 

.2005E -8 .1958E -8 

.1586E -8 .1563E -8 

.1461E -8 .1461E -8 

.1249E -8 .1232E -8 

.1071E -8 .1065E -8 

.9478E -9 .8773E -9 

.1875E -5 -(1,0) 

.4423E -7 -(1,2) 

.1323E -7 

.6235E -8 

.4044E -8 

.3014E -8 

.2109E -8 

.1742E -8 

.1563E -8 

.1344E -8 

.1203E -8 

.1065E -8 

.8772E -9 

.1599E -6 -(1,1) 

.2537E -7 -(0,3) 

.8994E -8 

.6234E -8 

.4043E -8 

.2565E -8 

.2034E -8 

.1712E -8 

.1479E -8 

.1343E -8 

.1199E -8 

.9599E -9 

.8269E -9 

.1347E -6 (0,2) 

.2537E -7 (3,0) 

.8636E -8 

.4873E -8 

.3321E -8 

.2565E -8 

.2006E -8 

.1586E -8 

.1474E -8 

.1264E -8 

.1072E -8 

.9580E -9 
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of 

Rome Air Development Center 

MDC is the principal AFSC organization charged with 
planning and executing the USAF exploratory and advanced 
development programs for information sciences, intelli- 
gence, command, control and communications technology, 
products and sei vices oriented to tho needs of the USÄF. 
Primary RADC mission areas are communications, electro- 
magnetic guidance and control, surveillance of ground 
and aerospace objects, intelligence data collection and 
handling, information system technology, and electronic 
reliability, maintainability and compatibility.    RADC 
has mission responsibility as assigned by AFSC for de- 
monstration and acquisition of selected subsystems arid 
systems in the intelligence, mapping, charting, command, 
control ana communications areas. 
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